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Abstract

A new variational space-time mesh refinement method is proposed for the FDTD solution of Maxwell�s equations.
The main advantage of this method is to guarantee the conservation of a discrete energy that implies that the scheme

remains L2 stable under the usual CFL condition. The only additional cost induced by the mesh refinement is the inver-

sion, at each time step, of a sparse symmetric positive definite linear system restricted to the unknowns located on the

interface between coarse and fine grid. The method is presented in a rather general way and its stability is analyzed. An

implementation is proposed for the Yee scheme. In this case, various numerical results in 3-D are presented in order to

validate the approach and illustrate the practical interest of space-time mesh refinement methods.

� 2005 Published by Elsevier Inc.
1. Introduction

Although very old, finite difference time domain methods (FDTD in the electro-magnetic literature) re-

main very popular and are widely used in wave propagation simulations or more generally for the solution

of linear hyperbolic systems among which Maxwell�s system is a typical example. These methods allow us to
get discrete equations whose unknowns are generally field values at the points of a regular mesh with spatial

step h and time step Dt. The numerical schemes that interest us are explicit: applying an explicit formula

provides the solution at time t + Dt from the solution at, or before, time t. For Maxwell�s equations, the
Yee scheme [15,23] is a prototype of such a scheme. This scheme is centered, of order two both in space

and time, and completely explicit. There are several reasons for the success of Yee type schemes, among
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which their easy implementation and the fact that a lot of properties of continuous Maxwell�s equations
(discrete energy conservation, free divergence property, etc.) are respected at the discrete level. The stability

and accuracy properties of this scheme are well known. A negative consequence of its explicit nature is that

the scheme is stable only under some stability CFL condition, which, in a homogeneous medium, can be

written as
cDt
h

6

ffiffiffi
d

p

d
;

where c denotes the propagation velocity of the waves and d the space dimension. This imposes that the

time step cannot be too large. This is not restrictive in practice since a sufficient accuracy requires a small

time step. On the other hand, Dt must not be too small either because, as is well known, the numerical dis-

persion, roughly speaking the error committed on the propagation velocity of waves, increases when the
ratio cDt/h decreases [8].

Of course, one of the drawbacks of such a method is a lack of ‘‘geometrical flexibility’’. In order to treat

complex geometries or geometrical details in diffraction problems, a natural idea is to use local mesh refine-

ments. Moreover, with finite difference methods, it is necessary to be able to treat non-matching grids (see

Fig. 1).

A first possibility consists in using only spatial refinement (see [1] for acoustic waves, [3] and [20] for

Maxwell�s equations). However, when a uniform time step is used, it is the finest mesh that will dictate

the time step because of the stability condition. Therefore, the computational costs will increase and, more-
over, the ratio cDt/h being much smaller than its optimal value in the coarse grid, one will generate disper-

sion errors. A way to avoid these problems is to use a local time step Dt, related to h in order to keep the

ratio cDt/h constant everywhere in the computational domain. This is why the question we addressed at the

beginning of this work was the following: how to do space-time mesh refinement with Yee�s scheme in such

a way that the stability of the coupling scheme is theoretically guaranteed and the stability condition is not

affected by the mesh refinement? This question appears much more delicate than in the case of a simple

spatial refinement. The numerous solutions suggested in the electro-magnetic literature are primarily based

on interpolation techniques (in time and/or in space) especially designed to guarantee the consistency of the
Ω

Ω

Fig. 1. 2-D slice of the domains Xf and Xc. Domain Xc is infinite and surrounds Xf.
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scheme at the coarse grid–fine grid interface (see for instance [19,18,22,7]). Unfortunately, the resulting

schemes appear to be very difficult to analyze and may suffer from some instability problems as shown

in [9] (see Fig. 2).

This is why we have developed an alternative approach that we shall present here in the case of two

spatial grids: one is twice as fine than the other (however the method extends to stronger refinement).
This method appears as an extension to higher dimensions of the method introduced in [10–12] for the

1-D wave equation. It is based on three major features, namely, the reinterpretation of Yee�s scheme as

a particular mixed finite element scheme, a domain decomposition approach with the introduction of a

Lagrange multiplier at the interface (as for the mortar element method), and finally – this is the most

original point – a specific time discretization procedure of the variational interface conditions that

guarantees a priori the stability of the scheme via the conservation of an appropriate discrete energy

(see Fig. 3).

In our presentation, we shall show a general abstract framework to which our strategy can be ap-
plied. That is why our method is not limited to Maxwell�s equations and Yee�s scheme. It can also be

applied to a large class of problems including acoustics, elastodynamics, fluid–structure interaction, etc.,

and can be generalized for instance to general finite elements (which can be of a different order in each

domain).

The outline of our article is as follows. In Section 1, we formulate the problem as a transmission

problem and derive the variational formulation that will be the basis of the discretization procedure.

We describe this procedure in Section 2. We present the abstract space discretization in Section 2.1

and the time discretization in Section 2.2 (which is the central section of the paper). We address in par-
ticular the questions of the existence of the discrete solution and of the stability of the method. In Sec-

tion 3, we apply our general procedure to the specific case of the Yee�s scheme. Section 4 is devoted to

the presentation of various numerical results, which in particular emphasize the interest of applying

local mesh refinement.
Fig. 2. 3-D view of the refinement.



Fig. 3. Degrees of freedom of E and H.
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2. Presentation of the method

2.1. The model problem

As a model problem, we consider (E,H), a solution of the Maxwell�s system in the whole space:
�0otEðx; tÞ � curlHðx; tÞ ¼ 0; x 2 R3;

l0otHðx; tÞ þ curlEðx; tÞ ¼ 0; x 2 R3.
ð1Þ
Initial conditions are given at t = 0. Source terms could also be added but are omitted to simplify the pre-

sentation. Our goal is to solve numerically this problem by domain decomposition using locally a grid

which is twice as fine as the grid in the rest of the domain. To be more specific, we consider a parallelepi-

pedic box Xf with boundary R. We denote by n(x) the outward (with respect to Xf) unit normal vector on R
at point x. The domain Xf is the one that we shall discretize with a fine grid of step h and Xc is the one that
we shall discretize with a coarse grid of step 2h. In what follows, (Ec,Hc) will denote the restriction to Xc of

the electro-magnetic field (index c refers to the ‘‘coarse grid domain’’) while (Ef,Hf) will denote the restric-

tion to Xf of the electro-magnetic field (index f refers to the ‘‘fine grid domain’’).

2.2. A 2-domain formulation

The fields Ec, Hc and Ef, Hf are solutions of Maxwell�s equations in Xc and Xf, respectively, and are cou-

pled through the continuity of the tangential traces of the electro-magnetic fields across R. This allows us to
reformulate the problem as follows. We introduce as an additional unknown the common ‘‘tangential

trace’’ of the magnetic fields Hc and Hf on the interface, more precisely,
Jðx; tÞ ¼ ðH cÞjRðx; tÞ ^ nðxÞ ¼ ðH fÞjRðx; tÞ ^ nðxÞ. ð2Þ
Note that J is the electric current flowing on the surface R. If we assume that J is known, (Ec,Hc) and

(Ef,Hf) are the respective solutions of the two following uncoupled boundary value problems, in which J

appears as a source term:
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�0otEfðx; tÞ � curlH fðx; tÞ ¼ 0; x 2 Xf ; ðiÞ
l0otH fðx; tÞ þ curlEfðx; tÞ ¼ 0; x 2 Xf ; ðiiÞ
H fðx; tÞ ^ nðxÞ ¼ Jðx; tÞ; x 2 R ¼ oXf ;

8><
>: ð3Þ

�0otEcðx; tÞ � curlH cðx; tÞ ¼ 0; x 2 Xc; ðiÞ
l0otH cðx; tÞ þ curlEcðx; tÞ ¼ 0; x 2 Xc; ðiiÞ
H cðx; tÞ ^ nðxÞ ¼ Jðx; tÞ; x 2 R ¼ oXc.

8><
>: ð4Þ
By construction, there is continuity of the tangential component of the magnetic field across the interface

between the two domains. The idea of the method is to consider J as a control variable in order to ensure

the continuity of the tangential electric field
nðxÞ ^ EfjRðx; tÞ ^ nðxÞ
� �

¼ nðxÞ ^ EcjRðx; tÞ ^ nðxÞ
� �

. ð5Þ
Our method of approximation will rely on the formulation (3)–(5).

Remark 1. The proof of the equivalence between problem (1) and (3)–(5) would be classical and easy if the
boundary R were smooth. In the case of a non-smooth R, a rigorous proof relies on trace theorems in the

space H(curl,Xf) for polyhedral domain Xf and related Green�s formula (see [6]).

The next step consists of establishing a mixed variational formulation of the coupled problem (3)–(5).

2.3. An abstract variational formulation

The functional framework is the following. We look for the electro-magnetic fields:
EfðtÞ : Rþ ! V f ¼ Hðcurl;XfÞ;
H fðtÞ : Rþ ! W f ¼ L2ðXfÞ;
EcðtÞ : Rþ ! V c ¼ Hðcurl;XcÞ;
H cðtÞ : Rþ ! W c ¼ L2ðXcÞ;
JðtÞ : Rþ ! M ¼ H

�1=2
k ðdivR;RÞ;

ð6Þ
where the space H
�1=2
k ðdivR;RÞ is precisely defined in [6]. This space is the image of Vf or Vc by the trace

map
csu ¼ u ^ njR.
We shall denote by ps the trace map
psu ¼ n ^ ðu ^ nÞjR;
which maps the spaces Vf and Vc continuously onto the dual space of M, M 0 ¼ H
�1=2
? ðcurlR;RÞ [6]. Finally,

we shall denote by ÆÆ,Ææ the duality product between M and M 0, which is the natural extension of the inner

product in L2(R)3.
Using the following Green�s formulae:
R

Xf
curlv � u� curlu � vð Þ dx ¼ hcsu; psvi 8u; v 2 Hðcurl;XfÞ;R

Xc
curlv � u� curlu � vð Þ dx ¼ �hcsu; psvi 8u; v 2 Hðcurl;XcÞ;

(
ð7Þ
it is easy to establish the following weak formulation of problem (3)–(5): Eqs. (i) and (ii) of (3) and (4) are

multiplied by appropriate test fields then integrated in space. We integrate by parts the terms involving the

curl of the magnetic field:



14 F. Collino et al. / Journal of Computational Physics 211 (2006) 9–35
d
dt

R
Xf
�0Efðx; tÞ � ~EfðxÞ dx�

R
Xf
curl~EfðxÞ � H fðx; tÞ dx ¼ �hJð.; tÞ; ps

~Efi 8~Ef 2 V f ;

d
dt

R
Xf
l0H fðx; tÞ � ~H fðxÞ dxþ

R
Xf
curlEfðx; tÞ � ~H fðxÞ dx ¼ 0 8 ~H f 2 W f ;

(
ð8Þ

d
dt

R
Xc
�0Ecðx; tÞ � ~EcðxÞ dx�

R
Xc
curl~EcðxÞ � H cðx; tÞ dx ¼ hJð.; tÞ; ps

~Eci 8~Ec 2 V c;

d
dt

R
Xc
l0H cðx; tÞ � ~H cðxÞ dxþ

R
Xc
curlEcðx; tÞ � ~H cðxÞ dx ¼ 0 8 ~H c 2 W c;

(
ð9Þ

hJ 0; psEfð.; tÞi ¼ hJ 0; psEcð.; tÞi 8J 0 2 M . ð10Þ

This problem enters into the framework of general abstract evolution problems of mixed type: Find

(Ec(t),Hc(t),Ef(t),Hf(t),J(t)) : R
þ ! V c � W c � V f � W f �M such that:
d
dt �cðEc; ~EcÞ � bcð~Ec;H cÞ þ ccðJ ; ~EcÞ ¼ 0 8~Ec 2 V c;

d
dt lcðH c; ~H cÞ þ bcðEc; ~H cÞ ¼ 0 8 ~H c 2 W c;

(
ð11Þ

d
dt �fðEf ; ~EfÞ � bfð~Ef ;H fÞ � cfðJ ; ~EfÞ ¼ 0 8~Ef 2 V f ;

d
dt lfðH f ; ~H fÞ þ bfðEf ; ~H fÞ ¼ 0 8 ~H f 2 W f ;

(
ð12Þ

ccð~J ;EcÞ ¼ cfð~J ;EfÞ 8~J 2 M ; ð13Þ

where:

� Uc, Wc, Uf and Wf are Hilbert spaces,

� �c (respectively, �f) is a continuous bilinear form on Vc · Vc (respectively, Vf · Vf),

� lc (respectively, lf) is a continuous bilinear form on Wc · Wc (respectively, Wf · Wf),

� bc (respectively, bf) is a continuous bilinear form on Vc · Wc (respectively, Vf · Wf),

� cc (respectively, cf) is a continuous bilinear form on M · Vc (respectively, M · Vf).

In our case, we have:
�cð~E; ~EÞ ¼
Z
Xc

�0~E � ~E dx; �fð~E; ~EÞ ¼
Z
Xf

�0~E � ~E dx;

lcð ~H ; ~HÞ ¼
Z
Xc

l0
~H � ~H dx; lfð ~H ; ~HÞ ¼

Z
Xf

l0
~H � ~H dx;

bcð~E; ~HÞ ¼
Z
Xc

~H � curl~E dx; bfð~E; ~HÞ ¼
Z
Xf

~H � curl~E dx;

ccðj; ~EÞ ¼ hj; n ^ ð~E ^ nÞjRi; cfðj; ~EÞ ¼ hj; n ^ ð~E ^ nÞjRi.

ð14Þ
3. Design of the numerical method

3.1. Variational space discretization. The semi-discrete problem

This step is quite standard. We introduce
V h
c � V c; W h

c � W c; V h
f � V f ; W h

f � W f ; and Mh � M ;
some discrete approximation subspaces of Vc, Wc, Vf, Wf, and M. In practice, these spaces will be con-

structed as finite element spaces associated with two different meshes of Xf and Xc: the typical situation
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is that the space step in the coarse grid domain Xc is twice as large as in the fine grid. To the ‘‘coarse

grid spaces’’, we associate the bilinear forms �hc , l
h
c , b

h
c , c

h
c defined, respectively, on V h

c � V h
c , W

h
c � W h

c ,

V h
c � W h

c and Mh � V h
c . Each of these bilinear forms will be an ‘‘approximation’’ of its correspondent

continuous bilinear form (without superscript h). In practice, these approximations will be related to

the use of quadrature formula for the computation of the various integrals that define the bilinear
forms (14).

Remark 2. Since we work with internal approximations, we could keep the continuous bilinear form

instead of our approximation. However, the use of numerical integration is justified to simplify the

structure of the matrices that will follow from approximation. This is particularly important for the mass
lumping procedure, i.e., obtaining diagonal matrices with the bilinear forms �c and lc.

We proceed in the same way for the bilinear forms associated to the fine grid domain. The semi-discrete

problem can be written as
Find ðEh

c ;H
h
c ;E

h
f ;H

h
f ; J

hÞ in V h
c � W h

c � V h
f � W h

f �Mh such that:
d
dt �

h
cðEh

c ;
~E
h
cÞ � bhcð~E

h
c ;H

h
cÞ þ chcðJh; ~E

h
cÞ ¼ 0 8~Eh

c 2 V h
c ;

d
dt l

h
cðHh

c ;
~H

h
cÞ þ bhcðEh

c ;
~H

h
cÞ ¼ 0 8 ~Hh

c 2 W h
c ;

8<
: ð15Þ

d
dt �

h
f ðEh

f ;
~E
h

f Þ � bhf ð~E
h

f ;H
h
f Þ � chf ðJh; ~E

h

f Þ ¼ 0 8~Eh

f 2 V h
f ;

d
dt l

h
f ðHh

f ;
~H

h
f Þ þ bhf ðEh

f ;
~H

h
f Þ ¼ 0 8 ~Hh

f 2 W h
f ;

8<
: ð16Þ

chcð ~Jh;Eh
cÞ ¼ chf ð ~Jh;Eh

f Þ 8 ~Jh 2 Mh. ð17Þ
It is useful to present the equivalent matrix formulation of problem (15)–(17). We introduce a basis of each
of the discrete spaces defined above and denote by Ef ; Ec; Hf ; Hc and J the vectors of the components of

Eh
f ; Eh

c ; Hh
f ; Hh

c and Jh in these bases (the degrees of freedom). We also define the matrices Bc, Cc, M
c
H and

M c
E by:
ðBcÞj;i ¼ bhcðvcj ;wc
i Þ; 1 6 i 6 dimðW h

cÞ; 1 6 j 6 dimðV h
cÞ;

ðCcÞj;i ¼ chcðmj; vci Þ; 1 6 i 6 dimðV h
cÞ; 1 6 j 6 dimðMhÞ;

ðM c
EÞi;j ¼ �hcðvci ; vcjÞ; 1 6 i 6 dimðV h

cÞ; 1 6 j 6 dimðV h
cÞ;

ðM c
H Þi;j ¼ lh

cðwc
i ;w

c
jÞ; 1 6 i 6 dimðW h

cÞ; 1 6 j 6 dimðW h
cÞ;
where wc
i (respectively, v

c
i , mi) is the ith basis function of W h

c (respectively, V
h
c , M

h). Matrices Bf, Cf, M
f
H and

M f
E are defined in a similar way. Finally, Problem (15)–(17) is equivalent to the following algebraic differ-

ential system:
M f
E
dEf
dt � BfHf � ðCfÞ�JðtÞ ¼ 0;

M f
H

dHf

dt þ ðBfÞ�Ef ¼ 0;

M c
E
dEc
dt � BcHc þ ðCcÞ�JðtÞ ¼ 0;

M c
H

dHc

dt þ ðBcÞ�Ec ¼ 0;

CcEc � CfEf ¼ 0.

8>>>>>>><
>>>>>>>:

ð18Þ
A condition is required to ensure the well-posedness of this system. To see that, we transform (18) into an

ordinary differential system by eliminating the unknown JðtÞ: we multiply the third equation of (18) by

ðM c
EÞ

�1
and the first one by ðM f

EÞ
�1
, taking the difference we get an expression of
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Cc

dEc

dt
� Cf

dEf

dt
;

as a function of J,Hf andHc; because of the fifth equation of (18), this quantity must vanish, which leads to

the equation
Ccð Þ M c
E

� ��1
Ccð Þ� þ ðCfÞ M f

E

� ��1ðCfÞ�
� �

JðtÞ ¼ Ccð Þ M f
E

� ��1
BcHcðtÞ � ðCfÞ M f

E

� ��1
BfHfðtÞ. ð19Þ
Thus, the existence of J requires that the positive symmetric matrix
Ccð Þ M c
E

� ��1
Ccð Þ� þ ðCfÞ M f

E

� ��1ðCfÞ�
is positive definite, which is equivalent to
KerðCfÞ� \Ker Ccð Þ� ¼ f0g. ð20Þ
Condition (20) expresses a compatibility condition between the spaces V h
c , V

h
f , and Mh. This condition is

equivalent to an inf–sup condition, which is a well-known necessary condition for the well-posedness of
a saddle point problems [5]. In our case, it reads
inf
Jh2Mh

sup
ðEh

c ;E
h
f
Þ2V h

c�V h
f

chcðJh;Eh
cÞ þ chcðJh;Eh

cÞ
kJhkMkðEh

c ;E
h
f ÞkV c�V f

> 0.
We will assume in what follows that (20) is satisfied.

Remark 3. Condition (20) is satisfied when one of the kernels, for instance Ker(Cf)*, is 0. We shall be in

this very situation when the Yee scheme is considered in Section 4.
3.2. Time discretization

The problem is discretized with a time step Dt in the fine grid and 2Dt in the coarse grid. As is classical, in
each domain, we use a staggered discretization : the electric and the magnetic fields are not computed at the

same instant, but:
Hh
f is discretized at time step nþ 1

2

� �
Dt ’ H

nþ1
2

f ;

Eh
f is discretized at time step nDt ’ En

f ;

Hh
c is discretized at time step ð2nþ 1ÞDt ’ H 2nþ1

c ;

Eh
c is discretized at time step 2nDt ’ E2n

c .
It is less obvious how to discretize the unknown J since it is defined at the interface of the two do-

mains. We choose to discretize it with the coarse time step 2Dt at the same instant as the magnetic field

in Xc:
Jh is discretized at time step ð2nþ 1ÞDt ’ J 2nþ1.
Finally, the discretization of (15) and (16) is performed through a standard leap frog scheme. We give below

the set of equations corresponding to the interval of time [2nDt, (2n + 2)Dt]:
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8~Eh

f 2 V h
f ; �hf

E2nþ1
f

�E2n
f

Dt ; ~E
h

f

� �
� bhf ~E

h

f ;H
2nþ1

2

f

� �
¼ chf J 2nþ1; ~E

h

f

� �
;

8 ~Hh
f 2 W h

f ; lh
f

H
2nþ1

2
f

�H
2n�1

2
f

Dt ; ~H
h
f

 !
þ bhf E2n

f ;
~H

h
f

� �
¼ 0;

8>>><
>>>:

8~Eh
f 2 V h

f ; �hf
E2nþ2
f

�E2nþ1
f

Dt ; ~E
h
f

� �
� bhf ~E

h
f ;H

2nþ3
2

f

� �
¼ chf J 2nþ1; ~E

h
f

� �
;

8 ~Hh
f 2 W h

f ; lh
f

H
2nþ3

2
f

�H
2nþ1

2
f

Dt ; ~H
h
f

 !
þ bhf E2nþ1

f ; ~H
h
f

� �
¼ 0;

8>>><
>>>:

ð21Þ

8~Eh

c 2 V h
c ; �hc

E2nþ2
c �E2n

c

2Dt ; ~E
h

c

� �
� bhc ~E

h

c ;H
2nþ1
c

� �
¼ �chc J 2nþ1; ~E

h

c

� �
;

8 ~Hh

c 2 W h
c ; lh

c
H2nþ1

c �H2n�1
c

2Dt ; ~H
h

c

� �
þ bhc E2n

c ;
~H

h

c

� �
¼ 0.

8><
>: ð22Þ
Only the constraint remains to be discretized. We do not choose it in just any way, but we use a time cen-

tered average, adequately selected to lead to a conservative scheme (as it will be seen afterward). This is the

key point of our method. This scheme reads
8J 0h 2 Mh; chf J 0h;
E2nþ2
f þ 2E2nþ1

f þ E2n
f

4

� �
¼ chc J 0h;

E2nþ2
c þ E2n

c

2

� �
. ð23Þ
The matrix form of this system is:
M f
E
E2nþ1
f

�E2n
f

Dt � BfH
2nþ1

2

f � ðCfÞ�J2nþ1 ¼ 0; ð1Þ

M f
H

H
2nþ1

2
f

�H
2n�1

2
f

Dt þ ðBfÞ�E2n
f ¼ 0; ð2Þ

M f
E
E2nþ2
f

�E2nþ1
f

Dt � BfH
2nþ3

2

f � ðCfÞ�J2nþ1 ¼ 0; ð3Þ

M f
H

H
2nþ3

2
f

�H
2nþ1

2
f

Dt þ ðBfÞ�E2nþ1
f ¼ 0; ð4Þ

8>>>>>>>>>><
>>>>>>>>>>:

M c
E
E2nþ2
c �E2nc
2Dt � BcH

2nþ1
c þ ðCcÞ�J2nþ1 ¼ 0; ð5Þ

M c
H

H2nþ1
c �H2n�1

c

2Dt þ ðBcÞ�E2n
c ¼ 0; ð6Þ

8>><
>>:
Cc

E2nþ2
c þE2nc

2
� Cf

E2nþ2
f

þ2E2nþ1
f

þE2n
f

4
¼ 0. ð7Þ

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð24Þ
This system, initialized by the discrete fields E0
f , E

0
c , H

1=2
f and H1

c , allows us to compute the solutions from

time step 2n to time step 2n + 2.

3.3. Theoretical analysis of the fully discrete scheme

3.3.1. Existence and calculation of the discrete solution

In this section, we show how to compute the solution of our scheme. A simple look at the system shows

that if the current is known, all the other unknowns can be computed explicitly (the current plays then the

role of a source term): the existence and uniqueness of the discrete solution is a simple consequence of the

existence of J2n + 1. So, we just have to show how the unknown J can be computed.
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We assume here that the discrete solution is known up to time step t2n. We show below that for each n,

J2nþ1 is obtained by solving a symmetric positive linear system.

We first take the difference between the first and the third equation of (24). This permits us to eliminate

the current and leads to
M f
E

E2nþ2
f � 2E2nþ1

f þ E2n
f

Dt2
� Bf

H
2nþ1

2

f �H
2n�1

2

f

Dt
¼ 0. ð25Þ
From the second equation of (24), we have
M f
E

E2nþ2
f � 2E2nþ1

f þ E2n
f

Dt2
þ Bf M f

H

� ��1
Bfð Þ�E2nþ1

f ¼ 0; ð26Þ
and therefore,
E2nþ2
f þ 2E2nþ1

f þ E2n
f

4
¼ Id � Dt2

4
M f

E

� ��1
Bf M f

H

� ��1
Bfð Þ�

� �
E2nþ1
f . ð27Þ
The first equation of (24) is used to get
M f
EE

2nþ1
f ¼ T2nþ1

f þ Cfð Þ�J2nþ1; ð28Þ

where T2nþ1

f depends only on E2n
f , H

2nþ1
f . Since H2nþ1

f is given explicitly in the sixth equation of (24), T2nþ1
f is

known. Finally, introducing the symmetric matrix,
Af ¼ M f
E

� ��1 � Dt2

4
M f

E

� ��1
Bf M f

H

� ��1
Bfð Þ� M f

E

� ��1

� �
; ð29Þ
we have
E2nþ2
f þ 2E2nþ1

f þ E2n
f

4
¼ Af T2nþ1

f þ Cfð Þ�J2nþ1
� �

. ð30Þ
Proceeding in the same way, with (24).(5), we get,
E2nþ2
c þ E2n

c

2
¼ T2nþ1

c � M c
E

� ��1
Ccð Þ�J2nþ1; ð31Þ
where, once again, T2nþ1
c is function of known quantities, independent of J2nþ1. Substituting (31) and (30) in

(24).(7), we obtain:
QJ2nþ1ðtÞ ¼ Ccð ÞT2nþ1
c � ðCfÞAfT

2nþ1
f .

Q ¼ Ccð Þ M c
E

� ��1
Ccð Þ� þ ðCfÞAfðCfÞ�

� �
.

8<
: ð32Þ
We notice that this linear system is invertible as long as:
KerðCfÞ� \Ker Ccð Þ� ¼ f0g;
Af > 0 : Dt2

4
Bf M f

H

� ��1
Bfð Þ� < M f

E;

(
ð33Þ
where the inequalities between symmetric matrices have to be taken in the sense of the associated quadratic

form. The first condition was already introduced to ensure the well-posedness of the semi-discretized prob-

lem. The second condition implies a bound for the time step Dt; if Bh
f is the linear operator from V h

f to W h
f

defined by the formula (44) associated with the matrix ðM f
HÞ

�1ðBh
f Þ

�
, the condition is
Dt2

4
lh
f Bh

~E;Bh
~E

� �
6 �hf

~E; ~E
� �

8~E 2 V f
h.
We shall see later that this condition coincides with the stability condition of the scheme.
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3.3.2. Energy estimation and stability

We intend to show the stability of our scheme through the conservation of an appropriate energy. This is

the key point of the analysis that justifies the choice of the coupling scheme (23). More precisely, we show

the conservation between two coarse time steps of a quadratic quantity that appears to be a discrete equiv-

alent of the electro-magnetic energy, namely, if
E2n
T ¼ 1

2
�hcðE2n

c ;E
2n
c Þ þ 1

2
lh
cðH 2nþ1

c ;H 2n�1
c Þ þ 1

2
�hf ðE2n

f ;E
2n
f Þ þ 1

2
lh
f ðH

2nþ1
2

f ;H
2n�1

2

f Þ; ð34Þ
then the following equality holds:
E2n
T ¼ E0

T 8n P 0. ð35Þ
We then show that this conservation implies the L2 stability of the scheme provided that a stability condi-

tion (CFL condition) is satisfied.

Taking ~E
h

c ¼
E2nþ2
c þE2n

c

2
in (22), we obtain
�hc
E2nþ2
c � E2n

c

2Dt
;
E2nþ2
c þ E2n

c

2

� �
� bhc

E2nþ2
c þ E2n

c

2
;H 2nþ1

c

� �
¼ �chc J 2nþ1;

E2nþ2
c þ E2n

c

2

� �
. ð36Þ
From (22) written at two consecutive time steps, we also deduce
8 ~Hh
c 2 W h

c ; lh
c

H 2nþ3
c � H 2n�1

c

4Dt
; ~H

h
c

� �
þ bhc

E2nþ2
c þ E2n

c

2
; ~H

h
c

� �
¼ 0.
Therefore, taking ~H
h
c ¼ H 2nþ1

c , we get
lh
c

H 2nþ3
c � H 2n�1

c

4Dt
;H 2nþ1

c

� �
þ bhc

E2nþ2
c þ E2n

c

2
;H 2nþ1

c

� �
¼ 0. ð37Þ
Let us define the coarse grid energy at time step 2n,
E2n
c ¼ 1

2
�hcðE2n

c ;E
2n
c Þ þ 1

2
lh
cðH 2nþ1

c ;H 2n�1
c Þ.
Adding Eqs. (37) and (36) leads to the identity
E2nþ2
c � E2n

c

2Dt
¼ �chc J 2nþ1;

E2nþ2 þ E2n

2

� �
. ð38Þ
In the same way, if we introduce the fine grid energy at time step n,
En
f ¼ 1

2
�hf ðEn

f ;E
n
f Þ þ 1

2
lh
f ðH

nþ1
2

f ;H
n�1

2

f Þ; ð39Þ
we easily obtain the two equalities:
E2nþ1
f � E2n

f

Dt
¼ chf J 2nþ1;

E2nþ1
f þ E2n

f

2

� �
;

E2nþ2
f � E2nþ1

f

Dt
¼ chf J 2nþ1;

E2nþ2
f þ E2nþ1

f

2

� �
;

from which we deduce
E2nþ2
f � E2n

f

2Dt
¼ chf J 2nþ1;

E2nþ2
f þ 2E2nþ1

f þ E2n
f

4

� �
. ð40Þ
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Let us define the total energy at time step 2n as
E2n
T ¼ E2n

f þ E2n
c .
We get from (40) and (38)
E2nþ2
T � E2n

T

2Dt
¼ chf J 2nþ1;

E2nþ2
f þ 2E2nþ1

f þ E2n
f

4

� �
� chc J 2nþ1;

E2nþ2
c þ E2n

c

2

� �
. ð41Þ
The right hand side of (41) vanishes which implies the conservation property E2nþ2
T ¼ E2n

T , whence (35).

Remark 4. The total energy E2n
T is a discrete equivalent of the electro-magnetic energy
Z

X
�0E2ðx; tÞ þ l0H

2ðx; tÞ
� �

dx.
Identity (35) shows that the coupling scheme is exactly the one that preserves the energy E2n
T .

From the conservation of the discrete energy, it is possible, if not easy, to find a sufficient condition of

stability. The idea is to find a sufficient condition for having a true energy (that is a positive definite qua-

dratic form). The trick is to use the remarkable identity
lh
f ðH

nþ1
2

f ;H
n�1

2

f Þ ¼ lh
f

H
nþ1

2

f þ H
n�1

2

f

2
;
H

nþ1
2

f þ H
n�1

2

f

2

 !
� Dt2

4
lh
f

H
nþ1

2

f � H
n�1

2

f

Dt
;
H

nþ1
2

f � H
n�1

2

f

Dt

 !
ð42Þ
and to estimate the negative term in (42) with the help of �hf ðEn
f ;E

n
f Þ.

More precisely, the second equation of (21) reads
H
nþ1

2

f � H
n�1

2

f

Dt
¼ Bh

fE
n
f ; ð43Þ
where Bh
f is the operator from V h

f into W h
f defined by
lh
f Bh

f v
h
f ;w

h
f

� �
¼ bhf ðvhf ;wh

f Þ 8wh
f 2 W h

f ð44Þ
with norm bf
b2
f ¼ sup

~E2V h
f

lh
f Bh

f
~E;Bh

f
~E

� �
�hf ð~E; ~EÞ

. ð45Þ
Using (43) in (42) as well as (45) provides the bound
lh
f ðH

nþ1
2

f ;H
n�1

2

f Þ P lh
f

H
nþ1

2

f þ H
n�1

2

f

2
;
H

nþ1
2

f þ H
n�1

2

f

2

 !
� b2

fDt
2

4
�hf ðEn

f ;E
n
f Þ ð46Þ
which, substituted into the expression of the fine grid energy (39), leads to
1

2
1� b2

fDt
2

4

� �
�hf ðEn

f ;E
n
f Þ þ

1

2
lh
f

H
nþ1

2

f þ H
n�1

2

f

2
;
H

nþ1
2

f þ H
n�1

2

f

2

 !
6 En

f . ð47Þ
We can of course proceed in a similar way for the coarse grid. We introduce the operator Bh
c and its norm

bh
c , obtaining
1

2
1� b2

cð2DtÞ
2

4

 !
�hcðE2n

c ;E
2n
c Þ þ

1

2
lh
c

H 2nþ1
c þ H 2n�1

c

2
;
H 2nþ1

c þ H 2n�1
c

2

� �
6 E2n

c . ð48Þ
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Gathering the two estimates, we get
1� b2
cDt

2
� �

�hcðE2n
c ;E

2n
c Þ þ lh

c

H 2nþ1
c þ H 2n�1

c

2
;
H 2nþ1

c þ H 2n�1
c

2

� �
þ 1� b2

fDt
2

4

� �
�hf ðE2n

f ;E
2n
f Þ

þ lh
f

H
2nþ1

2

f þ H
2n�1

2

f

2
;
H

2nþ1
2

f þ H
2n�1

2

f

2

 !
6 2E2n

f þ 2E2n
c ¼ 2E2n

T ¼ 2E0
T. ð49Þ
The last equality coming from the conservation of the total energy.

Let us assume
Dt <
2

bf

and Dt <
1

bc

. ð50Þ
Every term in the left hand side of the inequality in (49) is positive and the norms of the solutions are esti-

mated independently of the steps Dt and h. More precisely, inequality (49) directly provides L2 estimates of

both
E2n
f and

H
2nþ1

2

f þ H
2n�1

2

f

2
.

Using (43) at times 2n as well as the CFL condition permits us to estimate separately H
2nþ1

2

f and H
2n�1

2

f . We

proceed along the same lines in the coarse grid to estimate H 2nþ1
c . It remains to estimate E2nþ1

f , that can be

done through (26) as in [2]. We deduce the stability of the coupled scheme under the CFL condition (50).
4. Application to the Yee scheme

In this section, we apply the abstract framework of the previous section to a special case, in order the
design of a mesh refinement method for the Yee scheme. Let us consider a regular grid of R3 with cubes

of size 2h. We assume that the domain Xf is a subset of cubes of this grid. We define a refined grid of dis-

cretization on Xf by dividing each cube in Xf into eight identical cubes of side length h. In this way, we pro-

duce a fine grid in Xf and a coarse grid in Xc; the set of cubes of size h in Xf will be denoted by Th and the

set of cubes of size 2h covering Xc will be T2h.

4.1. Discretization spaces for the electro-magnetic field

For the discretization of the electric field, the Ndec�s first order edge element is chosen, namely:
V h
c ¼ Eh

c 2 V c=8K 2 T2h; Eh
c jK 2 Q0;1;1 � Q1;0;1 � Q1;1;0

� 	
;

V h
f ¼ Eh

f 2 V f=8K 2 Th; Eh
f jK 2 Q0;1;1 � Q1;0;1 � Q1;1;0

� 	
;

ð51Þ
where Qp1;p2;p3 denotes the set of polynomials whose degree in the variable xj is less or equal to pj. It is well

known that each vector field Eh
f in V h

f is entirely determined by the knowledge of the circulations along the
edges efk of the mesh Th. These are the degrees of freedom of the finite element space V h

f , and the basis func-

tions associated to them are denoted vfk. The same holds for the coarse grid. For the magnetic field, we shall

use H(div,Xc) and H(div,Xf) face elements, i.e.:
W h
c ¼ Hh

c 2 W c=8K 2 T2h; Hh
c jK 2 Q1;0;0 � Q0;1;0 � Q0;0;1

� 	
;

W h
f ¼ Hh

f 2 W f=8K 2 Th; Hh
f jK 2 Q1;0;0 � Q0;1;0 � Q0;0;1

� 	
.

ð52Þ
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Any vector field Hh
f in W h

f is entirely determined by the knowledge of their fluxes across the faces F f
‘ of the

meshTh. These are the degrees of freedom of the finite element space V h
f , and the basis functions associated

to them are denoted wf
‘. The same holds for the coarse grid.

For defining the approximate bilinear forms, we introduce a quadrature formula. Let u be a function

defined in Xf (respectively, Xc) such that the restriction to each cube K of Th (respectively, T2h) is contin-
uous in K, we define the discrete integral
uðxÞ dx ¼
X
K2Th

measðKÞ
8

X8
‘¼1

ujKðSK
‘ Þ; uðxÞ dx ¼

X
K2T2h

measðKÞ
8

X8
‘¼1

ujKðSK
‘ Þ; ð53Þ
where ðSK
‘ Þ‘¼1;8 is the set of the vertices of K, and:
�hcð~E; ~EÞ ¼ �0~E � ~E dx; �hf ð~E; ~EÞ ¼ �0~E � ~E dx;

lh
cð ~H ; ~HÞ ¼ l0

~H � ~H dx; lh
f ð ~H ; ~HÞ ¼ l0

~H � ~H dx;

bhcð~E; ~HÞ ¼ ~H � curl~E dx; bhf ð~E; ~HÞ ¼ ~H � curl~E dx.

ð54Þ
These quadrature formulae allow us to obtain diagonal mass matrices: we have (dji is the Kronecker
symbol):
M f
E

� �
k;k0

¼ dk
0

k

�0h
4

#fK 2 Th=efk � Kg; M c
E

� �
i;i0

¼ di
0

i

2h�0
4

#fK 2 T2h=eci � Kg;

M f
H

� �
‘;‘0

¼ d‘
0

‘

l0

2h
#fK 2 Th=F f

‘ � Kg; M c
H

� �
m;m0 ¼ dm

0

m

l0

4h
#fK 2 T2h=F c

m � Kg.
To construct the matrices Bh
f and Bh

c , it is useful to notice that
1

l0

curlV h
f � W h

f ;
1

l0

curlV h
c � W h

c ð55Þ
and consequently
Bf ¼
1

l0

M f
Hcurl

f ; Bc ¼
1

l0

M c
Hcurl

c; ð56Þ
where the matrices curlf and curlc are defined through
curlvfkðxÞ ¼
X

‘=efk�F f
‘
2Th

curlf
� �

‘;k
wf

‘ðxÞ; curlvci ðxÞ ¼
X

m=eci�F c
m2T2h

curlcð Þm;iwc
mðxÞ. ð57Þ
Both matrices (curlf) and (curlc) have at most four non-zero elements per line: at most two values are 1

while two others are �1, the signs being determined according to the relative orientation of the edge with

respect to the face. The lines with less than four non-zero elements correspond to faces situated on the

boundary of the domains Xf or Xc.

It is not difficult (and classical) to check that our discretization procedure leads to the Yee scheme [15] as

the inner scheme in both the fine and the coarse grids (it simply amounts to transform the degrees of free-
dom of the solution into field values by an appropriate scaling).
4.2. Discretization space for the current

For the discretization of the current J, we construct a surface mesh of the interface R as the trace of the

coarse grid in Xc. This mesh is made of the faces (squares of side length 2h) of the cubes of the coarse grid
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that intersect R. Let us denote by T2hðRÞ the set of these faces. As for boundary element methods, it is nat-

ural to choose the Rao–Wilson–Glisson (RWG) elements to construct the discretization space Mh
Mh ¼ Jh 2 M=8F 2 T2hðRÞ; Jh
jF 2 Q1;0 � Q0;1

n o
. ð58Þ
More precisely:

� For each face F, Jh
jF is tangent to F.

� Let (u1,u2) be an orthonormal basis, made of two unit vectors parallel to the edges of the face F, and

(y1,y2) the corresponding tangential coordinates. Then, Jh
jF 2 Q1;0 � Q0;1 means that Jh

jF � u1 is a polyno-

mial of degree one with respect to y1 and constant in y2 while J
h
jF � u2 is a polynomial of degree one with

respect to y2 and constant in y1.

� In addition, there is one condition per edge of the mesh, namely the continuity of the normal flux. In

practice, to any edge ecj of T2hðRÞ we associate a unit vector nj that defines an orientation for the fluxes

across ecj . This permits us to define without ambiguity F c
j;þ and F c

j;� as the two faces adjacent to ecj (nj is
outgoing for F c

j;þ , incoming for F c
j;� ). The continuity condition across ecj is then writtenZ Z
ecj

jhjF c
j;þ

� nj ¼ �
ecj

jhjF c
j;�

� nj ¼def Jj

� �
.

As a consequence, a discrete current is entirely determined by the fluxes Jj across the edges of the surface
mesh T2hðRÞ. We associate with these degrees of freedom, a basis mj of M

h, where j stands for the index of

the edges ecj of T2hðRÞ.

Let us finally give some details about the computation of the matrices Ch
c and Ch

f . For the definition of

chcð.; .Þ and chf ð.; .Þ, we use an approximation of cc(.,.) and cf(.,.) by using the quadrature formulas which are

the equivalent of (53) for surface integrals. We then have:
Ccð Þj;i ¼ n ^ ðvci ^ nÞ � mj ¼
X

F2T2hðRÞ

measðF Þ
4

X4
‘¼1

vci � mj

� �
jF ðS

F
‘ Þ;

Cfð Þj;k ¼ n ^ ðvfk ^ nÞ � mj ¼
X

F2ThðRÞ

measðF Þ
4

X4
‘¼1

vfk � mj

� �
jF ðS

F
‘ Þ;

ð59Þ
where indexes i and j refer to the edges eci and ecj of the coarse mesh ðecj 2 RÞ, while index k is linked to the

edges efk of the fine grid.

To assemble in practice these matrices, it is useful to use the classical reference element method. In our
case, the reference element is a square of side length 2h. Using the numbering of the local 4 coarse edges and

12 fine edges indicated in Fig. 4, we get the following expressions for the 4 · 12 and 4 · 4 elementary matri-

ces ðĈfÞ and ðĈcÞ:
Ĉc ¼
1

4

1 1 0 0

�1 �1 0 0

0 0 �1 �1

0 0 1 1

2
6664

3
7775; ð60Þ

Ĉ
t

f ¼
1

8

1 3 2 6 1 3 0 0 0 0 0 0

�3 �1 �6 �2 �3 �1 0 0 0 0 0 0

0 0 0 0 0 0 �3 �1 �6 �2 �3 �1

0 0 0 0 0 0 1 3 2 6 1 3

2
6664

3
7775. ð61Þ



Fig. 4. Local numbering of the degrees of freedom: (I) (respectively, (K)) corresponds to the circulation on a coarse (respectively, fine)

edge. (J) corresponds to the fluxes for the current.
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The matrices Cc and Cf are then deduced from the elementary matrices Ĉc and Ĉf by standard techniques

(we omit the details).

Remark 5. We have tested another choice for the approximation of the space M. It corresponds to using

surface edge elements based on the coarse surface mesh. This space is deduced from the space Mh described

above by applying to the vector fields a rotation of angle p/2 in the plane tangent to R. One can note that it

also corresponds to the space of tangential traces of the discrete electric fields V h
c , i.e., in the coarse grid

domain. We obtain a non-conforming approximation since this space is no longer a subspace of the

continuous space M: indeed, the tangential components are continuous across the edges of the surface

mesh, but not the normal component. Our reason for testing this choice was linked to the fact that the

structure of the resulting coupling matrix Qh is simpler because it is sparser. Unfortunately, the numerical

experiments we have performed seem to indicate that the resulting scheme, although stable, is not

convergent! Such an observation, which still has to be understood from a theoretical point of view, seems to

be in contradiction with the theoretical convergence results of [3] where non-conforming surfacic edge type

elements are also considered for the approximation of J. However, in [3], the electric field is not
approximated with the same edge elements space. Moreover, only the static problem is treated and the

question of mesh refinement in time is not considered.
4.3. Existence of the discrete solution. Stability

4.3.1. Well-posedness

Thanks to (61), it is possible to check that the kernel of ðCh
f Þ

�
is {0}, hence to deduce that the scheme is

well defined. The proof is as follows.

Let J be some vector in kerðCh
f Þ

�
and ecj be some coarse edge of T2hðRÞ. We denote by F c

j;þ the adjacent

face which is defined as in Section 4.2. We also denote ecj0 the edge of F
c
j;þ which is opposite to ecj . The line

joining the middle of ecj and ecj0 is made of two fine edges, namely
efk and efk0 .
This corresponds to the situation of Fig. 4.

From (61), it is easy to see that the equations nok and nok 0 of ðCh
f Þ

�
J ¼ 0 give
6
8
Jj � 2

8
Jj0 ¼ 0; �2

8
Jj0 þ 6

8
Jj0 ¼ 0;
from which we deduce that Jj0 ¼ Jj ¼ 0. This concludes the proof since the edge ecj is arbitrary (see Fig. 5).

Remark 6. The result is no longer true when J is discretized with the fine mesh (more precisely, the trace of
the fine mesh).



Fig. 5. The edges ecj ; e
c
j0 and efk ; e

f
k0. The continuous (respectively, dotted) lines represent the trace of the coarse (respectively, fine) grid.
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4.3.2. Stability condition

Another interesting point is to look at the CFL condition associated with the scheme. We return to the

abstract CFL condition (50), obtained in the previous section
Dt < max
1

bc

;
2

bf

� �
.

Using Property (55) and Definition (45), we have more explicitly
b2
f ¼ c20 sup

~E2V h
f

curl~E


 

2

~E


 

2 ; b2

c ¼ c20 sup
~E2V h

c

curl~E


 

2

~E


 

2 ;
where c0 is ð�0l0Þ
�1=2

. We use the bound
b2
f 6

~b
2

f ¼ c20 sup
~E2V h

f

sup
K2Th

curl~E


 

2

~E


 

2 .
The mesh being uniform, ~bf can be found explicitly by a simple diagonalization of a quadratic form in R12

(taking into account the 12 edges of a single element)
~b
2

f ¼
2

h2
c20 sup

v2R12

QðvÞ
kvk2

;

where the quadratic form QðvÞ is given by
QðvÞ ¼ v11 � v9 � v2 þ v1ð Þ2 þ v12 � v10 � v4 þ v3ð Þ2 þ v12 � v11 � v8 þ v6ð Þ2 þ v10 � v9 � v7 þ v5ð Þ2

þ v8 � v7 � v4 þ v2ð Þ2 þ v6 � v5 � v3 þ v1ð Þ2.
The quadratic form QðvÞ can be diagonalized: 0, 4, and 6 are its eigenvalues with respective multiplic-

ities 7, 3, and 2. We infer that ~b
2

f is
12c2

0

h2
. In the same way, it is found that b2

c is bounded by ~b
2

c ¼ 12c2
0

4h2

(the factor 4 is due to the doubled size of the element). Thus, we get the following sufficient condition

for stability,
Dt <
hffiffiffi
3

p
c0
.

An important remark is that this CFL condition is exactly the same as the one which gives stability of

the two FDTD schemes in an infinite grid, when no coupling occur. It is certainly a strong point of our

method.
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4.4. Considerations about the convergence analysis

Up to now, there have been very few complete results concerning the error analysis of the mesh refine-

ment methods which we presented in the previous section. This is why we shall now give some insights

about what such an analysis could be and indicate some directions of research (some of them being already
under way). In fact, it is natural to distinguish two sources of errors:

� The space discretization and the change of space step between Xc and Xf.

� The time stepping and the change of time step between Xc and Xf.

To analyze the error due to the space discretization, it suffices to look at the semi-discrete problem (15)–

(17). The most natural idea is to adapt to time evolution problems the analysis of the mortar element meth-

od that has already been carried out for corresponding static elliptic problems. There are at least two ways
to consider this question:

� Use the mixed finite element technology as it has already been done, for instance in [4] for the Laplace

equation. In this case, as mentioned in Section 3.1, the main difficulty lies in the proof of a uniform inf–

sup condition.

� Consider the mortar element method as a non-conforming finite element method of Maxwell�s equations
via a formal elimination of the Lagrange multiplier and try to apply the second Strang�s lemma.

This second point of view is the one that was adopted in the initial work on the analysis of the mortar

method [3]. It was successfully applied for (the elliptic version of) Maxwell�s equations in [3] when the second

family of edge elements [21] is used for the approximation of the electric field andnon-conforming surface edge

elements are used for the discretization of the surface current. To our knowledge, the extension of such results

for the finite elements we are considering in this paper (edge elements of the first family for the approximation

of the electric field and conforming surfacicH(div) elements for the surface current) remains an open problem.

The error due to the time discretization appears to be a more original issue. It has already been inves-

tigated in the case of the 1-D wave equation, [11,12]. Actually, if we apply our general method to the 1-D
problem with the splitting Xf = R+ and Xf = R�: the spaces Vf and Vc are H

1(R+) and H1(R�), Wf and Wc

are L2(R+) and L2(R�), and the space M for the multiplier is simply reduced to R. For the discretization, P1

finite elements are used for the V-spaces and P0 for the W-spaces (note that in the 1-D case, the question of

the space approximation for the current does not pose any difficulty); using a mass lumping procedure, it is

found that the scheme reduces to the 1-D FDTD scheme for the nodes not located at the interface; for the

degrees of freedom located in the vicinity of the interface, an original coupling scheme is thus derived. It is

possible to eliminate the current (a simple number) in these equations; we then obtain a finite difference

scheme which coincides with the scheme derived in [11] and studied in [12]. We refer the reader to Collino
et al. [12] for the results of the analysis of the scheme. This (non-standard) analysis essentially leads to an L2

error estimate in O(h3/2), assuming that the CFL number is kept constant: this loss of one half-power of h is

a consequence of the off-centered nature or the time discretization of the transmission conditions. However,

this O(h3/2) error appears to be confined in the neighborhood of the interface and we conjecture that one

recovers an O(h2) error estimate away from the interface.
5. Numerical aspects

We give in this section some hints about the implementation of our refinement method. We also present

some numerical experiments.
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5.1. Algorithm

5.1.1. Description of the algorithm

The time recursion can be solved along the following lines of:

� Apply scheme (24) on the time interval [nDt,2nDt], the source term J2nþ1 being set to zero:
H
nþ1

2

f ¼ H
n�1

2

f � Dt M f
H

� ��1
Bfð Þ�En

f ;

~E
nþ1

f ¼ En
f þ Dt M f

E

� ��1
BfH

nþ1
2

f ;

8<
:

~H
nþ3

2

f ¼ H
nþ1

2

f � Dt M f
H

� ��1
Bfð Þ�~Enþ1

f ;

~E
nþ2

f ¼ ~E
nþ1

f þ Dt M f
E

� ��1
Bf

~H
nþ3

2

f ;

8<
:

Hnþ1
c ¼ Hn�1

c � 2Dt M c
H

� ��1
Bcð Þ�En

c ;

~E
nþ2

c ¼ En
c þ 2Dt M c

E

� ��1
BcHnþ1

c .

(

� Solve the linear system (the matrix Q is given in (32))
QJnþ1 ¼ Cf

~E
nþ2

f þ 2~E
nþ1

f þ En
f

4
� Cc

~E
nþ2

c þ En
c

2
;

� Correct the previous time step:
Enþ2
c ¼ ~E

nþ2

c � 2Dt M c
E

� ��1
Ccð Þ�Jnþ1;

Enþ1
f ¼ ~E

nþ1

f þ Dt M f
E

� ��1
Cfð Þ�Jnþ1;

H
nþ3

2

f ¼ H
nþ1

2

f � Dt M f
H

� ��1
Bfð Þ�Enþ1

f ;

Enþ2
f ¼ Enþ1

f þ Dt M f
E

� ��1
BfH

nþ3
2

f þ Dt M f
E

� ��1
Cfð Þ�Jnþ1.

8>>>>>><
>>>>>>:
With respect to the simple marching of the Yee scheme in each grid, the main new step introduced by the

mesh refinement procedure is the solution of the linear system.

The matrix Q can be constructed by assembling all the matrices Cc, Cf, M
c
E, M

f
E, Bf, and M f

H , and com-

puting the different products appearing in formula (32). To obtain a simpler implementation, it is worth-

while to notice that computing a column of the matrix Q simply amounts to applying the explicit Yee

scheme in each grid during one coarse time step 2Dt for a given current. More precisely, let J be some cur-

rent, the computation of QJ can be obtained through the following procedure:

� Set the initial conditions E0
f ¼ H

�1=2
f ¼ E0

c ¼ H�1
c ¼ 0.

� Apply scheme (24) on the time interval [0,2Dt], the source term J being given:
H
1=2
f ¼ H

�1=2
f � Dt M f

H

� ��1
Bfð Þ�E0

f ;

E1
f ¼ E0

f þ Dt M f
E

� ��1
BfH

1=2
f þ C�

fJ
� �

;

8<
:

H
3=2
f ¼ H

1=2
f � Dt M f

H

� ��1
Bfð Þ�E1

f ;

E2
f ¼ E1

f þ Dt M f
E

� ��1
BfH

3=2
f þ C�

fJ
� �

;

8<
:

H1
c ¼ H�1

c � Dt M c
H

� ��1
Bcð Þ�E0

c ;

E2
c ¼ E0

c þ Dt M c
E

� ��1
BcH 1

c � C�
cJ

� �
.

(

� Compute
QJ ¼ Cc

E2
c þ E0

c

2
� Cf

E2
f þ 2E1

f � E0
f

4
.
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In practice, the above procedure is applied for each basis function of the space Mh. The scheme being expli-

cit, it is possible to restrict the integration of the Yee scheme to small boxes of some few meshes around the

coarse edge associated with the considered basis function. Matrix Q has a lot of good properties: it is real,

symmetric, sparse (it can be verified that Q possesses at most 25 non-zero elements per line), and well-

conditioned (the conditioning number is found approximatively independent of the size of the fine box
and ranges from 20 to 30 depending on the Courant number c0Dt

h ). The solution of the linear system can

be found by a simple conjugate gradient algorithm. As an example, we take Xf to be a cubic domain

10h · 12h · 8h. In this case, the size of the matrix is 1184 and the number of non-zero elements is

30,104, so that only 15,644 elements are stored since the matrix is symmetric. The skeleton of the matrix

Q is shown in Fig. 6. We found numerically that only 37 iterations were required to achieve a relative error

of 10�14 when c0Dt
h ’ 1ffiffi

3
p .
5.1.2. A remark about how to take into account a conductor across an interface

It is of course possible (and essential for practical applications) to extend the method presented in this

paper to the cases where perfectly conducting obstacles are located in the computational domain and cross

the interface between the two grids. From the theoretical point of view, the only modification lies in the

introduction of some new functional spaces M with a more involved definition. From a practical point

of view, the change in the discrete space Mh is not very complicated, at least if it is assumed that the surface

C of the conducting body can be approximated by a surface Ch which is a union of faces of the coarse and

fine meshes with the additional geometrical property:

� If a portion Cint
h (of non-zero measure) of the surface Ch coincides with a part of the interface R, then Cint

h

is made of a finite union of faces of the boundary mesh of R, i.e., of faces of the coarse grid mesh.

� If Ch crosses the interface R along a line, then this line is composed of segments of the coarse mesh.
Fig. 6. Sparsity pattern of the matrix Q for a refined box Xf of size 10h · 12h · 8h.
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Note that these hypothesis imply in particular that when the fine box boundary crosses the conducting

surface, it does so necessarily along squares of the coarse mesh or segments of the coarse mesh.

For each edge of T2hðRÞ, the number of degrees of freedom for the current Jh depends on the particular
status of this edge:

� It may be 0: this case occurs when the edge is completely embedded inside Ch.

� It may be 1 in two situations:

– The edge intersects Cint
h on one point or does not intersect Cint

h . Then, the support of the associated

basis function is composed of the two squares on which lies the edge (exactly as in the case without

conductor).

– The edge intersects Cint
h along a segment and one of the two elements associated with the edge is

embedded into Cint
h . In this case, the edge lies on the boundary of Cint

h and the support of the associated

basis function is a single element.

� It may be 2. When a part of Ch crosses transversally the box, it draws a line on R. Any edge belonging to

this line must support two degrees of freedom (because of the jump of the magnetic field across this line).

All that is described in more details in [14] where a simple algorithm for dealing with all the situations is

also given.
5.2. Numerical results

The results that we present in this section correspond to scattering experiments of an incident plane wave

whose propagation direction is parallel to one of the direction of the computational mesh, let us say

Eincðx; y; z; tÞ ¼ W ðt � z=c0Þŷ. The computation of the complete solution is obtained with the so-called Huy-

gens surface method: we define a cubic boundary as the Huygens surface and compute the total field inside

this surface and the scattered field outside; technically, it amounts to correcting the formulae of the scheme
that mix edges of different nature by the known incident field (see [15] for more details). On the outer

boundary, we use a Perfectly Matched Layer with an artificial layer of width four coarse steps. The incident

wave is approximated by an exact solution of the scheme in the coarse grid (practically, it is computed

through the solution of a 1-D Yee scheme); by doing so, we guarantee that the numerical solution of

the 3-D scheme in the free space is exactly the incident wave for the edges lying inside the Huygens surface

and vanishes for the edges lying outside this surface.

In all experiments, the Huygens surface always surrounds the fine grid. The domain of computation is a

cubic box of size 10 m. The wavelet is a Gaussian: F ðtÞ ¼ 1000 expð�ðt�5t0
t0

Þ2Þ and t0 = 10 ns. The mesh in
the coarse grid consists of cubes of size 2h = 0.25. This corresponds roughly to 15 points per wavelength

(measured with respect to the cutoff frequency of our incident signal). The ratio c0Dt
h is kept constant and

equal to 0.95
ffiffi
3

p

3
.

Three experiments will be presented:

� An artificial diffraction by a local refinement of the mesh in the whole space: Section 5.2.1.

� The diffraction by a beveled wedge (a geometry that does not fit the mesh): Section 5.2.2.

� The diffraction by a resonant cavity with a small aperture: Section 5.2.3.

In the last two cases, a reference solution is computed with a very fine uniform grid of step size 2h
4
and

three computations are compared; the first one with a coarse grid (2h everywhere), the second one with a

fine grid everywhere (h everywhere) and finally, one with a coarse grid locally refined.
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5.2.1. An academic example: refining a box in the whole space

Wemeasure the effect of a simple grid refinement on the propagation of the incident plane wave in the free

space.We repeat the same experiment for different grids, one with a coarse mesh without refinement, one with

a fine mesh everywhere, and another one with a local refinement in a small parallelepipedic box of size 5h, 6h

and 4h in the respective directions x, y and z. A simulation with a very fine mesh is our reference solution. We
examine the field at a coarse point located one coarse mesh behind the refined box. The comparison is shown

in Fig. 7. We can see that all the curves look the same. Considering the error, we observe that the error with

the refinement in the small box looks the same as that without any refinement. It means that for this degree of

discretization, (about 15 points per wavelength), the error due to the local refinement can be neglected in view

of the much larger classical errors due to dispersion. Some other experiments [14] show that the difference

between fields computed in meshes with a refined box of size d and the field computed in a single coarse grid

increases continuously with the size d of the refined box. This can be easily explained by the fact that the dis-

persion is lowest during the propagation of the wave inside the fine grid and so the larger the fine grid the
larger the difference. To observe the error only due to the box, we have measured the ratio of the electric

energy due to the component Ex and Ez (which ought to be very small) to the electric energy due to the

component Ey; the result is that this ratio does not surpass 48 dB no matter what size of the box.

5.2.2. Scattering by a beveled wedge

We consider in this paragraph a case where the refinement is useful for diminishing numerical diffraction

effects. We take a perfect conducting object with a geometry that does not fit the mesh; this requires the use of

a staircase approximation of the geometry, clearly a difficult situation, especially when the scatterer has angu-
lar points. We create a fine grid around a beveled wedge as shown in Fig. 8. The results, depicted in Fig. 10,

show that the error decreases with the local refinement and can even be as good as if the mesh were refined

everywhere (Fig. 11). This might be explained by the fact that the error is mainly due to the singularity of the

solution at the angle of the wedge, the error related to the dispersion effect being small (see Fig. 9).

5.2.3. The case of a Helmholtz resonator

We consider the scattering of a wave on a metallic cavity, the surface of a parallelepiped

C ¼ ½0; 20h� � ½0; 20h� � ½0; 10h� minus a square (a window W) slightly shifted with respect to the center
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Fig. 7. Propagation in the free space: on the left, the field Ey versus time at a point located in the coarse mesh one step behind the

refined cubic domain; on the right, the difference with a reference solution.



Fig. 8. Position of the fine grid with respect to the wedge.

Fig. 9. Position of the fine grid with respect to the wedge.
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Fig. 10. The beveled wedge: Ez versus time at recording point 1.
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of one of its faces: W ¼ ½7h; 11h� � ½7h; 11h� � f0g. We put a fine grid around the window

(Xf = [6h,12h] · [6h,12h] · [�h,h]) and record the field ~E at a point R located just inside the window and in-

side the coarse grid R = (8h,8h,2h).

We illustrate the experiment in Fig. 12 and the corresponding results are presented in Fig. 13. The exper-

iment with the local refinement gives results of the same quality as that with a fine grid throughout the do-

main. At the same time, the CPU time is increased by a factor 1.4 with the local refinement and by a factor
16 with the refinement in the whole domain.
Fig. 12. An empty metallic cube has a window where the wave can enter and we record the solution inside the cube.
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6. Conclusion

We have presented a contribution to space-time refinement methods for the numerical solution of time

dependent Maxwell�s equations. The new method we have proposed presents two main theoretical advan-

tages over most of the solutions previously proposed in the literature:

� The first one is robustness. By construction, our method is conservative, which guarantees theoretically
the stability. Other methods, such as interpolation methods, are quite difficult to analyze and may

encounter some stability problems, [14]. Moreover, the stability condition is not affected by the mesh

refinement procedure.

� The second one is its very general nature (see [16]). Although we have chosen to present, for the sake of

simplicity, the method for mesh refinement for the Yee�s scheme, our algorithm can be applied to a large

class of methods allowing for the possibility of using different discretization inside each domain includ-

ing various finite element methods on unstructured grids or finite element methods of different orders.

Our procedure can also be applied to various physical problems such as elastic wave propagation [2]
or fluid–structure interaction problems.

Regarding accuracy, a question which we have not treated in this paper from the theoretical point of

view, some partial results are available in the literature in the 1-D case [12,17] where it is shown that

our method has second order accuracy (O(h2) L2-error estimates) in regions that avoid the interface (global

L2 error estimates only provide a O(h3/2) accuracy, which is sharp). These results confirm the soundness of

our approach and show a certain superiority of our method with respect to standard interpolation methods

(which are generically first order accurate).
With respect to the usual explicit finite difference scheme, the additional cost of the method consists in

assembling the matrix Q which permits us to calculate the electric current on the interface and inverting this

matrix (which is sparse positive definite, and thus easily invertible by Cholesky or Conjugate Gradient) at

each time step. We have shown an implementation of the computation of the matrix Q that aims at sim-

plicity by exploiting the explicit nature of the interior scheme and which is very useful in practice.
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Finally, our various 3-D numerical experiments illustrate the practical interest (in terms of a gain in com-

putational time and memory storage) of using a space-time mesh refinement procedure for diffraction prob-

lems. Let us mention that, even though the results we have presented have been obtained with a single 1–2

mesh refinement, the use of successive mesh refinements can obviously be used and can be implemented in a

recursive way.
To conclude, we mention that, apart from the extension of our method to other physical problems, our

research is continuing in several directions:

� The extension to more general refinements (typically (Dt/p,Dt/q) where (p,q) are integers).

� The improvement of the accuracy of the method (including in the neighborhood of the interface).

� The coupling of this method with the fictitious domain method introduced in [13], whose philosophy is

close to the one of the conservative mesh refinement method.
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[9] F. Collino, T. Fouquet, P. Joly. Analyse numérique d�une méthode de raffinement de maillage espace-temps pour l�équation des

ondes, Technical Report 3474, INRIA, Aout, 1998.
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